

DCPR Enhancements to Increase Capacity

Ryan Shoup, Bob Wezalis, John Taylor, & Josh Model

Mar 2004

Rationale / Overview

- Root Raised Cosine Filtering
 - Rationale and Advantages/Disadvantages
 - RRC Implementation considerations

GOES Data Collection System

- Communications link designed to relay information gathered from data collection platforms (DCPs) located throughout Western Hemisphere
- 400 KHz bandwidth allocated for the the GOES DCS communications link
 - Multiple Access system
 - 200 FDMA channels @ 1500 Hz
 - 33 FDMA channels @ 3000 Hz
 - Three data rates supported per channel
 - 100 bps BPSK modulation @ 1500 Hz
 - 300 bps 8-PSK TCM modulation @ 50 dBm (max) and 1500 Hz
 - 1200 bps 8-PSK TCM modulation @ 53 dBm (max) and 3000 Hz
 - Channels alternate between two satellites
- DCP Messages comprise of a header + information
 - Information typically formatted using ASCII text
 - Binary and Pseudo-binary also possible formats for information

Advantages/Disadvantages to RRC

- Advantages / Rationale
 - RRC filtering will increase the spectral efficiency of the DCPR system
 - Spectral Efficiency = bits per second / Bandwidth (Hz)
 - Increase in spectral efficiency results in increased capacity of the DCPR communications system as more DCPs would be able to be supported
- Disadvantages
 - Additional users on GOES DCPR channel requires power levels be addressed
 - Need to maintain same satellite output power as seen today without impacting user E_B/N₀
 - RRC waveforms will have higher peak to average ratios compared to the current (rectangular pulse) waveforms

Where does RRC fit?

- RRC filtering would be performed on data collected from sensor
- Shift register (tapped delay line) function easily performed on small low cost CPLD/FPGA or in software via microprocessor
- At Rx, CDA employs RRC matched filter detection for best performance

RRC Implementation Tradeoffs

- Practical baseband spectrum approaches theoretical as Coeffs 1
- 100 Coefficients results in near ideal baseband spectrum

BER Degradation due to ISI

- Need to consider resulting amount of ISI based on RRC implementation
- In general BER ↓ as number of coefficients ↑
- Relatively few Coefficients results in near ideal BER
 - RRC implementation induces negligible
 ISI

DCPR 8-PSK TCM Asymptotic BER

Matched Filter Mismatch Degrades BER

- Optimal implementation requires that CDA employ matched filter demodulation
 - Filter matched to transmitted RRC waveform
- Without matched filter, loss can be on the order of 1 dB

DCPR 8-PSK TCM Asymptotic BER

RRC Excess Bandwidth Parameter Tradeoffs

- As excess bandwidth parameter ↑
 - Spectral efficiency \downarrow
 - Peak to average ratio \downarrow
 - Sensitivity to ISI ↓

Example: RRC sensitivity to timing error

Power Level Considerations Part I

- DCP Transmit Power Levels
 - Keep at current levels to minimize changes to DCPs
 - Avoid need for new antennas, larger power amplifiers, etc.
- Satellite Power Levels
 - Dynamic range of input signal
 - Average power through satellite
 - Power limitations on AGC circuitry and amplifier
 - Transmit Power Levels
 - Need to ensure compliance with PFD requirements
 - Neg 154 dBW per m² per 4 KHz
 - Current levels ~ 10 dB lower when channels fully loaded

Power Level Considerations Part II

- Need to consider the satellite [and DCP] power amplifier when considering RRC filtering
- Signals with lower peak to average ratios perform better when considering nonlinear amplifiers
- Consideration illustrated via examples:
 - Case I: Infinite BW & Rectangular Pulses
 - Results in ideal constant envelope modulation for PSK transmissions
 - True regardless of QPSK, 8-PSK, OQPSK, ..., etc.
 - Ratio of the peak to average signal power level = 2
 - This is the best obtainable
 - Case II: Filtered Rectangular Pulses
 - Filtering employed since finite bandwidth available
 - Filtering results in waveform that is no longer constant envelope
 - Peak to average ratio becomes larger than 2
 - Actual peak to average ratio dependent on amount of filtering applied and modulation type (OQPSK vs QPSK, etc).

Power Level Considerations Part II (con't)

- Case III: RRC Pulses
 - Envelope is inherently not constant
 - Peak to average ratio > 2
 - Peak to average ratio \downarrow as excess bandwidth parameter \uparrow
- As the peak to average ratio ↑ and the average power → amplifier compression point:
 - Distortion to waveform more likely to happen
 - Distortion occurs since some portions of the transmitted signal will undergo saturation due to amplifier
 - Distortion results in transmitted waveform not being equal to waveform used in the matched filter
 - This results in ISI which degrades BER
- Summary
 - Need to consider where satellite and DCP high power amplifiers operate
 - If they typically operate close to amplifier nonlinear region then need to consider this when finalizing RRC parameters

Peak to Average Ratio CDF

Peak to Average Ratio CDF

OQPSK helps by reducing peak to average by ~ 1.2 dB

Summary

- Root Raised Cosine
 - Root Raised Cosine filtering results in system that achieves better spectral efficiency
 - Use of RRC filtering with 1200 bps signal may drive ground platform power amplifier into saturation
 - RRC results in higher peak to average
 - Constant envelope modulation or more linear amplifiers may be required
 - Low cost estimates to upgrade transmitters (DCPs) and receiver